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Walsh Spectrum Characterization on Sampling
Distributions

e Following a rump talk by Yi LU at FSE'2017 in Japan, it is
proposed as a suitable topic for submission to the Nature journal.

e Main problem statement is as follows.

Consider the sampling problem for a fixed, yet unknown source
distribution D (or the so-called signal source). A few parameters:
1) the sample number is denoted by S,

2) the dimension of the signal source is denoted by 2",

3) the Walsh spectrum of the source distribution is denoted by the
three valued set {0, +d, —d}, where the value d and the number k
of nonzero coefficients are unknown variables.
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Walsh Spectrum Characterization on Sampling
Distributions (cont’d)

e Given an input array x = (xg, x1, . .., xan_1) of 2" reals in the time
domain, the Walsh transform y =X = (yo, y1, ..., y2n—1) of X is
i &S (~1) W)y, for i e GF(2)".
jEGF(2)n

e The main problem asks to obtain as precise and much knowledge
as possible about the signal source D from the sampling
distribution D’ using S samples.

e The main goal is to find out some large or even the largest
nontrivial Walsh coefficient(s) and the index position(s) for D.
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Important Comments

e This work is the follow-up result of [Lu-Desmedt'2016], [Lu'2016]
and has origins in linear cryptanalysis (cf. [Lu-Vaudenay'2008],
[Molland-Helleseth'2004]).

e Note that usually we have S < 2”7 and are dealing with the case of
sparse large-dimensional signal in the time domain.

e |n real life, three kinds of source distribution D are most
interesting:

1) the dimension 2" is very large (e.g., 2%4),
2) Walsh spectrum is not just a three valued set,
3) D is an un-normalized distribution.

e The proposed problem incorporates the case that the source
distribution D has zeros in the time domain.
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Motivation on Studying Channel Capacity
(cont’d)

e Case Three: Non-Binary Non-square Channel

(o],

D, U denote the source distribution and the uniform distribution
over the binary vector space of dimension n respectively.

e Recall that the Channel Capacity with the transition matrix T,
denoted by C(T), invented by Shannon, describes the maximum
rate (i.e., bits/transmission) to send information through the
channel with an arbitrarily low error probability.

e In above Case Three, C(T) gives a perfect answer to the key
question in cryptanalysis: What is the minimum number of data
samples to distinguish one biased distribution from the uniform
distribution?
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e Due to independent works of [Arimoto’1972] and [Blahut'1972],
the Blahut-Arimoto algorithm is known to efficiently calculate the
capacity for the discrete memoryless channel (DMCs).

e For the desired absolute accuracy € of the capacity,
Blahut-Arimoto algorithm solves the problem with transition
matrix size N x M within time O(MN? log N /).

¢ Note that the most recent work [Sutter et al’2014] has the
complexity O(M?N+/log N/¢) for the same problem.




Blahut-Arimoto Algorithm in Pseudo-Codes

Input:
QkU: transition matrix of size 2 x 2"
(po, p1): input distribution vector
€ : the desired absolute accuracy
initialize the values of Qy; and po, p1
repeat

Qxlo

21
co < exp(YiZo Quolog m)

€+ exp(Zi;Ol Qg1 log W)
Ip < log(poco + prc1)
ly < log max(co, ¢1)
update po by poco/(poco + pic1)
update py by prci/(poco + prci)

until |ly — | <e

output /;

oxNoa ~ Wb

._.
e



Capacity Results for n=8, k=1

BA algorithm results for n=8, k=1, d
02 03 04 05 06 07 08 09 1

300 v e b e P L b L 300
b ®  BA outputs L
- 2 -
250 e s +  8log2/d E 250
] . F
] L] [
5"200—_ . _—200
% ] . C
3 150 - 150
‘ﬂ_l' B L
= i L
- ] N
100—_ _—100
7] . [
50 - 50
] . B
- * -
i + +* L
0 ||||||||||||\|||\|||\|||\|||\|||||T|||| 0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
d



Capacity Results for n =8,k = 2 (cont’d)

BA algorithm results for n=8, k=2, d
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Capacity Results for n =8,k = 4 (cont’d)

BA algorithm results For n=8, k=4, d
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Capacity Results for n = 8,¢ = 0.01 (cont’d)

BA algorithm results For n=8
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Further Discussions
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About High-Precision Numerical Computation
Software

e From well-proved paper formulas/algorithms to correct and
efficient computer implementations, we have a long road to go.

e In the new era of big data, high-precision numerical computation
software is badly needed.

e Current available software and libraries with the feature:

MATHEMATICA

MATLAB

GNU Multiple Precision Arithmetic Library (GMP)
GNU Scientific Library (GSL)

etc.

o

O O O O
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Inspection on BA Capacity Calculations with
n=8k=1,d=0.25,¢=0.1

e With pg = 0.8, p1 = 0.2, BA algorithm luckily terminates with only
one iteration forn =8,k =1,d = 0.25,¢ = 0.1.

e This encourages us to inspect the calculation details in order to
check the precision of the results.

e Check the value of ¢;:

log(c1) = —8log(2) — 278 ~ —5.549.

e Check the value of ¢y = exp(TMP1 — TMP2):

3 3. 5 5
TMPL = glo8(1554) + g '°8(3024) (1)
42%08 4.2
TMpy — 22x08 42 2)

i
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Inspection on BA Capacity Calculations with
n=8k=1d=0.25¢=0.1 (cont’d)

To finalize,
e check the value of /:
logco = TMP1— TMP2 = —5.513
ly = max(—5.513, —5.549) = —5.513

e check the value of /;:
I, = log(0.8xe 5312402 e7%5%) = |og(e5%%) = —5.5X, (3)

as log(+) and exp(-) both increase with the input.

e As|ly — 1] < 0.1, we now know /; = —5.5X.

e Meanwhile, the computer running BA algorithm also outputs /;:
“—5.5", i.e., to be interpreted as | — 5.5 — 0.1, =5.5 4 0.1].
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Comments

e With previous parameters, we have justified that
capacity €] — 5.6, —5.4].

e As the number of transmissions per bit with arbitrarily small error
probability is a critical quantity, we are mostly concerned with the
value of

1/(e%P2CY) €244 — 23,244 4 26[

due to e>% = 221.X, %5 =244 X, 5% =270.X.

e For lower value of € and k > 1, manual checking becomes harder
for (1-3).

e Open Question:
Evaluate the output precision of a composite function, which has
exact values of inputs initially.
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Conclusion

e \We have implemented the efficient BA capacity calculation
algorithm for the transition matrix of size 2 x M.

e Our implementation allows to solve a lower-bound for
distinguishing two distributions with arbitrarily small error
probability.

e We have done experiments in the setting of Sparse Walsh
Spectrum with M = 28 ¢ = 0.01, k = 1,2,4 and one distribution is
a uniform distribution.
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Conclusion (cont’d)

e In typical Crypto setting, we notice that the capacity is a negative
value, which differs from the real world communication channels.

e We have examined the important issue of calculation precision with
M=2%e=01k=1.

e \We are carrying out challenging large-scale experiments with larger
M and more values of k.
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