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Walsh Spectrum Characterization on Sampling
Distributions

• Following a rump talk by Yi LU at FSE’2017 in Japan, it is
proposed as a suitable topic for submission to the Nature journal.

• Main problem statement is as follows.

Consider the sampling problem for a fixed, yet unknown source
distribution D (or the so-called signal source). A few parameters:
1) the sample number is denoted by S ,
2) the dimension of the signal source is denoted by 2n,
3) the Walsh spectrum of the source distribution is denoted by the
three valued set {0,+d ,−d}, where the value d and the number k
of nonzero coefficients are unknown variables.
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Walsh Spectrum Characterization on Sampling
Distributions (cont’d)

• Given an input array x = (x0, x1, . . . , x2n−1) of 2n reals in the time
domain, the Walsh transform y = x̂ = (y0, y1, . . . , y2n−1) of x is

yi
def
=

∑
j∈GF (2)n

(−1)〈i ,j〉xj , for i ∈ GF (2)n.

• The main problem asks to obtain as precise and much knowledge
as possible about the signal source D from the sampling
distribution D ′ using S samples.

• The main goal is to find out some large or even the largest
nontrivial Walsh coefficient(s) and the index position(s) for D.
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Important Comments

• This work is the follow-up result of [Lu-Desmedt’2016], [Lu’2016]
and has origins in linear cryptanalysis (cf. [Lu-Vaudenay’2008],
[Molland-Helleseth’2004]).

• Note that usually we have S � 2n and are dealing with the case of
sparse large-dimensional signal in the time domain.

• In real life, three kinds of source distribution D are most
interesting:

1) the dimension 2n is very large (e.g., 264),
2) Walsh spectrum is not just a three valued set,
3) D is an un-normalized distribution.

• The proposed problem incorporates the case that the source
distribution D has zeros in the time domain.
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Motivation on Studying Channel Capacity

• Inspired by the idea of compressive sensing, [Lu’2015] first

constructed imaginary channel transition matrices T
def
= p(y |x) of

size 2× 2 and 2×M, and introduced Shannon’s channel coding
problem to statistical cryptanalysis.

• Case One: BSC (Binary Symmetric Channel)

T =

[
1− p p

p 1− p

]
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Motivation on Studying Channel Capacity
(cont’d)

• Case Two: Non-Symmetric Binary Channel

T =

[
1− p p
1/2 1/2

]
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Motivation on Studying Channel Capacity
(cont’d)

• Case Three: Non-Binary Non-square Channel

T =

[
D
U

]
,

D,U denote the source distribution and the uniform distribution
over the binary vector space of dimension n respectively.

• Recall that the Channel Capacity with the transition matrix T ,
denoted by C (T ), invented by Shannon, describes the maximum
rate (i.e., bits/transmission) to send information through the
channel with an arbitrarily low error probability.

• In above Case Three, C (T ) gives a perfect answer to the key
question in cryptanalysis: What is the minimum number of data
samples to distinguish one biased distribution from the uniform
distribution?
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The Famous Blahut-Arimoto Algorithm

• Due to independent works of [Arimoto’1972] and [Blahut’1972],
the Blahut-Arimoto algorithm is known to efficiently calculate the
capacity for the discrete memoryless channel (DMCs).

• For the desired absolute accuracy ε of the capacity,
Blahut-Arimoto algorithm solves the problem with transition
matrix size N ×M within time O(MN2 log N/ε).

• Note that the most recent work [Sutter et al’2014] has the
complexity O(M2N

√
log N/ε) for the same problem.
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Blahut-Arimoto Algorithm in Pseudo-Codes

Input:
Qk|j : transition matrix of size 2× 2n

(p0, p1): input distribution vector
ε : the desired absolute accuracy

1: initialize the values of Qk|j and p0, p1

2: repeat

3: c0 ← exp
(∑2n−1

k=0 Qk|0 log
Qk|0

p0Qk|0+p1Qk|1

)
4: c1 ← exp

(∑2n−1
k=0 Qk|1 log

Qk|1

p0Qk|0+p1Qk|1

)
5: IL ← log(p0c0 + p1c1)
6: IU ← log max(c0, c1)
7: update p0 by p0c0/(p0c0 + p1c1)
8: update p1 by p1c1/(p0c0 + p1c1)
9: until |IU − IL| < ε

10: output IL



Capacity Results for n = 8, k = 1



Capacity Results for n = 8, k = 2 (cont’d)



Capacity Results for n = 8, k = 4 (cont’d)



Capacity Results for n = 8, ε = 0.01 (cont’d)
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About High-Precision Numerical Computation
Software

• From well-proved paper formulas/algorithms to correct and
efficient computer implementations, we have a long road to go.

• In the new era of big data, high-precision numerical computation
software is badly needed.

• Current available software and libraries with the feature:
◦ MATHEMATICA
◦ MATLAB
◦ GNU Multiple Precision Arithmetic Library (GMP)
◦ GNU Scientific Library (GSL)
◦ etc.
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Inspection on BA Capacity Calculations with
n = 8, k = 1, d = 0.25, ε = 0.1

• With p0 = 0.8, p1 = 0.2, BA algorithm luckily terminates with only
one iteration for n = 8, k = 1, d = 0.25, ε = 0.1.

• This encourages us to inspect the calculation details in order to
check the precision of the results.

• Check the value of c1:

log(c1) = −8 log(2)− 2−8 ≈ −5.549.

• Check the value of c0 = exp(TMP1− TMP2):

TMP1 =
3

8
log(

3

1024
) +

5

8
log(

5

1024
) (1)

TMP2 =
42× 0.8

8× 1024
=

4.2

210
(2)
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Inspection on BA Capacity Calculations with
n = 8, k = 1, d = 0.25, ε = 0.1 (cont’d)

To finalize,
• check the value of IU :

log c0 = TMP1− TMP2 = −5.513

IU = max(−5.513,−5.549) = −5.513

• check the value of IL:

IL = log(0.8×e−5.513+0.2×e−5.549) = log(e−5.5X ) = −5.5X , (3)

as log(·) and exp(·) both increase with the input.
• As |IU − IL| < 0.1, we now know IL = −5.5X .
• Meanwhile, the computer running BA algorithm also outputs IL:

“−5.5”, i.e., to be interpreted as ]− 5.5− 0.1,−5.5 + 0.1[.
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Comments

• With previous parameters, we have justified that
capacity ∈]− 5.6,−5.4[.

• As the number of transmissions per bit with arbitrarily small error
probability is a critical quantity, we are mostly concerned with the
value of

1/(ecapacity) ∈]244− 23, 244 + 26[

due to e5.4 = 221.X , e5.5 = 244.X , e5.6 = 270.X .

• For lower value of ε and k > 1, manual checking becomes harder
for (1-3).

• Open Question:
Evaluate the output precision of a composite function, which has
exact values of inputs initially.
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algorithm for the transition matrix of size 2×M.

• Our implementation allows to solve a lower-bound for
distinguishing two distributions with arbitrarily small error
probability.

• We have done experiments in the setting of Sparse Walsh
Spectrum with M = 28, ε = 0.01, k = 1, 2, 4 and one distribution is
a uniform distribution.
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